

AVT-339 Research Workshop on Robotics and laser/plasma – paint interaction in paint removal

Nd:YAG laser de-painting and its effects on military aircraft surfaces

Henning Baron Airbus Defence and Space GmbH Germany

29 – 30 April 2020

Introduction: YAG:Nd laser de-painting process

Airbus has qualified two pulsed YAG:Nd laser de-painting processes:

- Handheld laser de-painting of electrical bonding points as per 80-M-35-0230
- Robot-guided laser de-painting of aircraft components as per 80-M-35-9140

Laser equipment parameters						
Manufacturer	Clean-Lasersysteme GmbH,					
	Herzogenaurach, Germany					
Main unit	CL500					
Scan frequency	100 Hz					
(applied)						
Scan width	≤ 70 mm					
Pulse frequency	27 kHz					
(applied)						
Brennweite	160 mm					
Focus diameter	700 μm (focal length of 150 mm)					
Laser class	4					
Feed rate	0.028 ^m / _s					

Nd:YAG laser de-painting trial campaigns

- In order to gather hands-on experience and finally qualify the laser de-painting process, two de-painting trial campaigns were conducted by Airbus Manching.
- The first campaign focussed on the verification of process parameters and establishment of de-painting programs.
- The second campaign focussed on the potential of laser de-painting as a pre-treatment and adhesion promotion before re-painting.

Carbon fibre composite specimens "Eurofighter"

- The first group of specimens represents approx. 80 % of the EF exterior surface.
- Specimen built-up:

Polyurethane Top-Coat	Alexit 472-22, matt Thickness: 48 ± 5 μm		
Epoxy Primer, chromate-free	Seevenax 113-24 Thickness: 22 ± 12 μm		
CFRP	Carbon Fibre prepreg Thickness: 2 mm		

Nd:YAG laser effects test programme

- \geq 50 µm of PUR top-coat is mostly removed after 3 de-painting overruns.
- \geq 25 µm of epoxy primer are still intact after the same energy intake.

Carbon fibre composite specimens "Eurofighter"

De-painted surfaces were examined by means of Scanning Electron Microscopy (SEM).

The examined CFRP specimen shows a very rough surface, some parts of which apparently being molten.

Aluminium alloy specimens "Eurofighter"

- The second group of specimens represents < 15 % of the EF exterior surface.
- Specimen built-up:

Polyurethane Top-Coat	Alexit 472-22, matt Thickness: 40 ± 10 μm		
Epoxy Primer, chromate-free	Seevenax 113-24 Thickness: 25 ± 5 μm		
Epoxy Primer, chromate-loaded	Seevenax 113-22 Thickness: 25 ± 5 μm		
Anodic Film	Thickness: 2 μm		
Aluminium alloy substrate	AA2024T3, unclad		

Amount of paint residues is clearly depending on the paint layer thickness: While there were only little residues on the 3 de-painting overrun specimen, on the 4-overrun-specimen up to 8 μ m of primer remain.

Aluminium alloy specimens "Eurofighter"

The "clean" specimen was examined in Energy-dispersive X-ray spectroscopy (EDX) for element analysis:

- > The shows traces of Barium (blue colour area), which originates from paint residues
- The coating material has not been entirely removed without residues.
- EDX shows an even distribution of oxygen compounds, which indicates the formation of an even oxide layer.

AVT-RWS-339

Nd:YAG laser effects test programme

Aluminium alloy specimens "Eurofighter"

The "clean" specimen was examined in Scanning Electron Microscopy (SEM).

- Both CAA substrates (pictures b and c) show the removal of the anodizing layer. Instead there is found an apparently compact oxide layer of 40 to 60 nm in thickness that shows molten areas.
- In addition the oxide layer of both specimens is covered with small agglomerated particles.

5 overruns

On the left SEM picture paint residues are clearly visible.

Aluminium alloy specimens "Tornado"

- The third group of specimens represents > 80 % of the TOR exterior surface.
- Specimen built-up:

Polyurethane Top-Coat	Aerodur HF A 133D Thickness: 40 ± 10 μm		
Epoxy Primer, chromate-free	Seevenax 113-24 Thickness: 25 ± 5 μm		
Wash primer, chromate-loaded	Celerol 913-21 Thickness: 10 ± 2 μm		
Aluminium alloy substrate	AA2024T3, unclad		

Nd:YAG laser effects test programme

- Laser treatment damages the adhesion of the EP primer on the wash primer.
- > PUR top-coat and EP primer are removed easily after the 3rd overrun.
- Selective de-painting of top-coat is not possible.
- Wash primer residues remain on the surface for a very long time.

Aluminium alloy specimens "Tornado"

The "clean" specimen was examined in Energy-dispersive X-ray spectroscopy (EDX) for element analysis:

- > The EDX picture shows an even oxide layer.
- In addition, the picture still shows remnants of carbon, indicating an incomplete removal of the coating material.

Aluminium alloy specimens "Tornado"

The "clean" specimen was examined in Scanning Electron Microscopy (SEM).

- The SEM pictures show a compact oxide layer with thicknesses between 50 to 100 nm.
- The surface shows a grainy structure. The paint apparently has been completely removed.
- Smooth areas as well as molten areas are visible.

Examination of newly generated oxide layer

- Both aluminium alloy specimen types showed the generation of a compact oxide layer on the Al surface.
- SEM analysis of these layers revealed thicknesses between 10 and 100 nm.
- In order to characterize the oxide layers as a potential pre-treatment for re-painting, Airbus performed further examinations, i.e.:
 - Adhesion of subsequent paint coatings,
 - Corrosion protection of bare Al surface,
 - Corrosion protection of painted Al surface.
- For this purpose clean unpainted Al specimens were treated with the same laser parameters.

Examination of newly generated oxide layer

Paint adhesion on laser-de-painted surfaces

Good paint adhesion, but water blisters after water immersion!

Examination of newly generated oxide layer

Corrosion pr	otection	21 hours of salt surau avansura	24 riburs or sait spray exposure acc. to ISO9227:	TSA Reference untreated	ce,	Laser-treated CAA	Laser-treated AA2024, bare	Laser de- painted	
Salt spray exposure 1000 hours acc. to ISO9227 Painted and scribed	TSA Reference	Laser-treated bare Al-sheets		Laser -treated anodized Al- sheets		Laser de-painted Al-sheets			
Aerowave 2001 + Aerowave 5001 Aerodur 2100 MgRP		Deint Crosser			Pai	int Creepage			
+ Aerodur 5000		Paint Creepag	e			Blisters			

Summary

- Laser de-painting of all examined paint materials proved to be feasible. However, different types of paint require different amounts of energy.
- For full removal of all paint residues from Al surfaces high enrgies (≤ 7 overruns) are required.
- Laser-treatment generates a very rough CFRP surface with partly molten areas.
- Laser-treatment destroys anodic films and generates a dense oxide layer of 10 to 100 nm in thickness on Al surfaces.
- Examinations of these oxide layers showed detrimental behavior with regard to adhesion of subsequent paint layers and corrosion protection.
- ➔ Therefore Airbus Defence and Space took the decision that the laser de-painting process may not be applied for the removal of an entire coating system from an aluminium surface. Instead, the top-coat on an Al component shall be selectively de-painted until the primer surface is reached.
- In case of full de-painting the oxide layer has to be removed, e.g. by abrading.

Open questions

- Does CO₂ lasers have a similar influence on Al surfaces?
- Which effects does laser de-painting have on surface corrosion?
 - Are these "oxide layers" also removed?
 - Is corrosion removal (e.g. by means of shot peening) still required?
- How does the generated oxide layer effect fatigue life of treated parts?

Nd:YAG laser de-painting and its effects on military aircraft surfaces

Thank you

